2021 4 | R workshop

Basic Statistics with R

서울대학교 언론정보학과 황현정 0 1 R 이란 무엇인가

R 소개

- R 프로그래밍 언어(줄여서 R)는 통계 계산과 그래픽을 위한 프로그래밍 언어이자 소프트웨어 환경이다. 뉴질랜드 오클랜드 대학의 로스 이하카와 로버트 젠틀맨에 의해 시작되어 현재는 R 코어 팀이 개발하고 있다.
- R의 문법과 통계처리 부분은 AT&T 벨 연구소가 개발했던 S를 참고했고, 데이터 처리부분은 스킴에 영향을 받았다.
- R은 다양한 통계 기법과 수치 해석 기법을 지원한다.

R은 사용자가 제작한 패키지를 추가하여 기능을 확장할 수 있다.

핵심적인 패키지는 R과 함께 설치되며, CRAN(the Comprehensive R Archive Network)을 통해 2021년 현재 17,000개 이상의 패키지를 내려 받을 수 있다.

- R의 또다른 강점은 그래픽 기능으로 수학 기호를 포함할 수 있는 출판물 수준의 그래프를 제공한다.
- R은 통계 계산과 소프트웨어 개발을 위한 환경이 필요한 통계학자와 연구자들 뿐만 아니라, 행렬 계산을 위한 도구 로서도 사용될 수 있으며 이 부분에서 GNU Octave나 MATLAB에 견줄 만한 결과를 보여준다.
- R은 윈도, 맥 OS 및 리눅스를 포함한 UNIX 플랫폼에서 이용 가능하다.

Why R?

- R의 장점
 - 무료
 - 자유로운 데이터 분석이 가능
 - > Graphical User Interface (GUI)를 이용한 분석 환경은 처음에는 접근이 쉬우나 확장성에 한계가 있음. > 스스로 새로운 기능을 추가하는 것도 자유로움
 - 그래픽이 **예쁘다**
- R의 단점
 - 커맨드라인(command line) 기반 환경
 - > 명령어들 다수가 정해진 문법을 따라야 함
 - > 결과가 잘못되었을 때 따라오는 피드백이나 에러메시지가 그다지 친절하지 않음
 - 한글 표기가 잘 작동하지 않음

R Studio

~/Dropbox/R_workspace/R_wor	kshop - RStudio					
🖹 🗝 🚍 🔝 🚔 🌧 Go to file/function					🔍 R	_worksho
le ~/Dropbox/R_workspace/R_workshop/ ⇔	Environment	History				-
	🞯 🔒 🖙	Import Dataset 🗸 🎻 Clear	C			≣ List
ion 3.1.2 (2014-10-31) "Pumpkin Helmet" abt (C) 2014 The R Foundation for Statistical Computing	Global Env	ironment -			Q,	
orm: x86_64-apple-darwin13.4.0 (64-bit)						
루 소프트웨어이며, 어떠한 형태의 보증없이 배포됩니다.			Environment is empty			
실정한 조건하에서 이것을 재배포 할 수 있습니다.						
관련된 상세한 내용은 'license()' 또는 'licence()'을 통하여 확인할 수 있습니다.						
≧ 기여자들이 참여하는 공동프로젝트입니다.						
'ibutors()'라고 입력하시면 이에 대한 더 많은 정보를 확인하실 수 있습니다. R 또는 R 패키지독은 춘파목에 이용하는 방법에 대해서는 'citation()'은 통해 확인하시길 분타드립니다						
)'를 입력하신다면 몇가지 데모를 보실 수 있으며, 'help()'를 입력하시면 온라인 도움말을 이용하실 수 있습니다.						
nelp.start()'의 입력을 통하여 HIML 브라우저에 의한 도움질을 사용하실수 있습니다 로를 원하시면 'q()'을 입력해주세요.						
	Files Plots	Packages Help View	ver			_
	New Folde	r 🧕 Delete 👍 Rename	🔮 More -			
	🗌 🏠 Home	> Dropbox > R_workspace	R_workshop			
	▲ Na	ıme		Size	Modified	
	L					
	🗆 🛎 R_wo	orkshop.Rproj		205 B	Jul 6, 2015, 2:0	5 AM
	1					

R Studio

			🔋 Newspaper_2017 🔹
Console ~/Dropbox/R_workspace/Newspaper_2017/ 🔅	Environment His	story Connections	
	💣 🔒 🖙 Impo	rt Dataset 👻 🍯	≣ List • 🛛 🕃
Natural language support but running in an English locale	Global Environm	ent 🔹	Q,
D is a sell-boosting project with many contribution	Data		
Type 'contributors()' for more information and	Doth	791 obs. of 589 variables	
'citation()' on how to cite R or R packages in publications.	💿 by_cyl	32 obs. of 11 variables	
	🔍 cor.data	1099 obs. of 17 variables	
<pre>iype 'aemo()' for some aemos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help.</pre>	<pre>O cpi1</pre>	790 obs. of 6 variables	
Type 'q()' to quit R.	<pre>O cpi1.g</pre>	46 obs. of 3 variables	
	O cpi2	720 obs. of 6 variables	
[Workspace loaded from ~/Dropbox/R_workspace/Newspaper_2017/.RData]	<pre>O cpi2.g</pre>	48 obs. of 3 variables	
>	O data	1099 obs. of 275 variables	
	O data2	1201 obs. of 322 variables	
Basic_result.Rmd × Basic_result4.Rmd × Untitled3* × Untitled4* × Untitled5 × total ×	⇒[] demo	791 obs. of 10 variables	
🔄 🖒 🔎 🔚 🗋 Source on Save 🔍 🎢 📲 📄	Files Plots Pa	ckages Help Viewer	- 0

R Studio 설명

- Console 창
- 모든 명령어와 결과가 나타남.
- 1회성으로 명령어가 흘러감. 명령어 편집 등을 할 수 없으나, 간단한 명령어 실행해 볼 때는 사용해도 됨
- · Source창
 - 명령어 작성과 편집은 여기서
 - 명령어 입력 후, 선택하여 'Run'하거나 "Ctrl(mac의 경우 Command) + Enter" 해야 실행
 - 명령어 자동 완성 기능 사용 명령어 치고 "tab 키"를 누르면 파일명이나 변수명을 자동으로 찾아 줌 문자, 숫자, 연산자, 명령어가 색깔이 다르게 표기되므로 구분이 쉬움

History

- 이제까지 console에서 실행한 명령어들을 볼 수 있음
- 과거 실행 명령어를 선택하여 console로 보내거나, source창으로 보낼 수 있음

• Environment:

- 현재 작업 중에 생성 한 변수, 데이터 등을 볼 수 있음
- object의 간단한 구조도 보여줌
- **Packages:** 현재 설치한 package들을 보여줌
- Plots: 그래프를 그릴 경우 표시되는 창
- **Files:** Working Directory에 있는 파일들 보여줌

R 그리고 데이터 분석을 시작하는 마음가짐

- 사람은 실수한다. 그러나 컴퓨터는 실수하지 않는다.
- 데이터 정리에 시간을 아끼지 말라.
- 일정한 규칙에 따라 정리 규칙은 간단하게
- 내가 만들지 않은 데이터는 절대 그대로 쓰지 않는다.
- 데이터를 정리할 때는 컴퓨터처럼 생각한다.
- Detail, detail, detail
- 사소한 것도 기록하고, 저장한다.
- 에러를 두려워하지 말라.

시작하기 전에...

- R의 기본 명령어 구조는 "명령어()" 형태
 - () 속에는 명령어가 적용될 변수, 데이터 등을 넣는다
- ・ object 이름은 숫자로 시작해서는 안된다
- ・ object 이름에는 공백이 있어서는 안된다 → "."나 "_"를 사용
- 대문자, 소문자를 구분한다
- 띄어쓰기는 하는 것과 하지 않는 것이 동일하다
 - \rightarrow coding etiquette
 - (https://ourcodingclub.github.io/2017/04/25/etiquette.html)
- R studio에서 명령어와 파일 쉽게 입력하기 위해서는 작성 중에 tab을 눌러보자
 - 명령어의 옵션, Working Directory에 있는 파일, 사용 가능한 object들을 보여줌

Basic Operators

연산자	뜻
+, -, *, /	더하기, 빼기, 곱하기, 나누기
log(), log10()	로그
exp()	exponetial
sqrt()	제곱근(√)
==, !=	같다, 같지 않다
>, <, >=, <=	크다, 작다, 크거나 같다, 작거나 같다
round()	반올림
ceiling()	올림
floor()	버림
%/%	몫
%%	나머지
•	수열
&	and
	or

기본 함수들

명령어	기능	예제
ls()	생성된 object 리스트를 보여줌	
rm()	object 삭제	rm(x), rm(list = ls())
gc()	garbage collection 호출하여 메모리 효율 성을 올림	
c(,)	2개 이상의 원소 결합	c(x, y), c(1:3, 5), c("Dad", "Mom", "Dog")
rep(,)	원소를 반복	rep(5, 5), rep(0, 10), rep(1:3, 5)
seq(, ,)	규칙이 있는 수열 생성	seq(1, 10, 2), seq(-10, 10, 3)
sort()	정렬	sort(x), $sort(x, decreasing = TRUE)$
order()	첨자정렬	order(x)
sample(,)	데이터 섞기, 랜덤추출	sample(1:10, 5), sample(1:10, 5, replace = TRUE
paste(, , sep =)	문자열 연결	paste("Hi", "everyone", sep = " "), paste("A", 1:10, sep="")
gsub	문자열 대치, 변경	gsub("a", "z", "abc, cba, xya"), gsub(pattern, replacement, x)

Working directory 설정

- getwd함수로 작업 디렉터리 확인, setwd 함수로 변경
 - > getwd()
 - [1] "/Users/hjhwang/Dropbox/R_workspace/R_workshop"
 - > setwd("/Users/hjhwang/Dropbox/R_workspace/practice")
 - > getwd()
 - [1] "/Users/hjhwang/Dropbox/R_workspace/practice"
- 내가 지금 어디에 있는지 확인하기
- Working Directory에 데이터 파일들을 저장하면 이용하기 쉽다
- 결과를 저장할때, 별도로 지정하지 않으면 Working Directory에 저장된다.
- R studio에서 변경 및 확인
 - file pane에서 확인하고 변경하기
- R project 생성하기
 - 데이터 분석을 시작할 때, 작업 공간을 세팅하고 시작하기
 - 새로운 분석을 만들 때마다, 프로젝트를 새로 생성해서 관리하면 좋다.
 - 프로젝트 안에 데이터 파일, 코드, 결과를 함께 관리

R의 데이터 구조

- R object에는 벡터(Vectors), 행렬(Matrices), 리스트(Lists), 데이터프레임(Dataframes), 배열(Arrays)가 있다.
- 동질적 객체(Homogeneous Objects): 벡터, 행렬, 배열
- 이질적 객체(Heterogeneous Objects): 리스트, 데이터 프레임
- 벡터와 리스트는 1차원 객체, 행렬과 데이터프레임은 2차원 객체, 배열은 필요한 만큼의 차원을 가질 수 있다.

벡터

```
• 같은 형의 원소로 구성된 objects
```

```
> v <- 1:10
> v
[1] 1 2 3 4 5 6 7 8 9 10
> v <- c(1, 3, 5, 7, 9)
> v
[1] 1 3 5 7 9
> v <- c("Fred", "Mary", "David")
> v
[1] "Fred" "Mary" "David"
>
```

- []를 통해서 indexing
- c(), rep(), seq() 등으로 생성

행렬

- matrix 함수를 사용하여 생성: matrix(values, ncol, nrow)
- dim 함수로 벡터를 행렬로 변경 가능
- 행렬 내 원소에 접근하려면 행과 열 번호를 인덱스로 이용 [row, col]
- 벡터와 같은 방식으로도 인덱싱 가능

리스트

이질적인 원소들로 구성되는 object
 list() 로 생성

 lst <- list(3.14, "Moe", c(1, 1, 2, 3))
 lst
 [1]]
 [1] 3.14

 [[2]]

 [1] "Moe"
 [1] 1 1 2 3

리스트(Cont.)

・ [], [[]] 로 인덱싱 (이거 좀 헷갈림!!)

> lst <- list(name = "Fred", wife = "Mary", c(1, 3, 5, 10))</pre> > lst \$name [1] "Fred" \$wife [1] "Mary" [[3]] [1] 1 3 5 10 > lst[[1]] [1] "Fred" > lst\$name [1] "Fred" > lst[[3]] [1] 1 3 5 10 > lst[1] \$name [1] "Fred"

데이터 프레임

- 행과 열로 구성된 행렬 형식의 object
 - list의 한 종류.
 - 모든 열의 길이가 같은 리스트의 조합
 - row은 case, column은 variable 또는 attribute
 - data frame의 예

Name	Age	Gender	Weight
Dad	43	Male	76
Mom	42	Female	56
Sister	12	Female	42
Brother	8	Male	25
Dog	5	Female	5

- 표의 첫 행은 메타데이터. 데이터에 대한 데이터
- Data frame 속성
 - 행(row): case
 - 열쇠속성(key attribute): "Name" 각 행을 유일하게 특정하는 사례이름
 - 열(column): variable
 - > 한 열은 위아래로 모두 동일한 종류의 값을 가지고 있다

(Name: character, Age: numeric, Gender: factor, Weight: numeric)

- 모든 열은 같은 수의 엔트리를 가지고 있다 -> 전체 데이터는 직사각형 형태

데이터 프레임

- Data frame 내 indexing
 - 데이터프레임명\$리스트 key 형태로 얻어낼 수 있다
- ・ []를 사용하여, 행번호 또는 열번호 지정 가능

(순서는 [행(row), 열(column)])

> Family\$Age
[1] 43 42 12 8 5
> Family\$Gender
[1] Male Female Female Male Female
Levels: Female Male

> Family[1,] Name Age Gender Weight 1 Dad 43 Male 76 > Family[,3] [1] Male Female Female Male Female Levels: Female Male > Family[4,2] [1] 8 > Family[[2]] [1] 43 42 12 8 5 > Family[2] Age 1 43 2 42 3 12 8 4 5.5

데이터 불러오기

- read.csv(file = "")
 - 1) data가 들어 있는 파일을 .csv로 바꾸어 저장한다: 엑셀에서 다른 이름으로 저장
 - 2) csv 파일을 R의 working directory에 넣는다: getwd()에서 확인한 폴더에 저장)
 - 3) read.csv 명령어로 파일을 R에 불러온다
 - 4) 꼭 object 에 따로 저장한다: data <- read.csv(file = "")의 형태로 명령어 입력
 5) environment에 data가 제대로 불려졌는지 확인
- · package 를 활용
 - csv: readr
 - read_csv
 - excel: readxl
 - read_xls
 - read_xlsx
 - read_excel
 - SPSS, SAS, STATA: haven / foreign

read_spss / read_sav (read.spss / read.sav)

```
read_sas (read.sas)
```

```
read_stata / read_dta (read.stata / read.dta)
```

데이터 저장하기

- write.csv(x, file = " ")
 write_csv(x, file = " ")
 write_sav(x, path = " ")
 write_dta(x, path = " ")
- save(x, file = "")
 save를 사용할 경우, Rdata 파일로 저장됨
- 저장된 데이터 파일은 working directory에서 찾을 수 있다.

03 R데이터 보기

데이터 구조 보기

- str(data)
 - 데이터의 전체적인 구조를 보여줌
 - 데이터의 형태, 원소, 갯수 등을 한 눈에 파악 가능
- View(data)
 - 엑셀처럼 표의 형태로 보여줌. source 창 옆에 데이터를 열람할 수 있는 창이 열림
 - 전체 변수, 전체 개체수를 보여주지는 않음
- names(data)
 - 데이터의 변수 이름을 보여줌
- dim(data)
 - 데이터의 행과 열의 수를 확인
- · head(data)
 - 데이터의 시작 6행을 보여줌
 - 6행이 아닌 지정된 숫자의 행을 보고 싶을 경우, head(data, 10)의 형태로 숫자를 넣어주면 됨
- tail(data)
 - 데이터의 끝 6행을 보여줌
 - 6행이 아닌 지정된 숫자의 행을 보고 싶을 경우, tail(data, 10)의 형태로 숫자를 넣어주면 됨
- summary(data)
 - 데이터의 통계적 요약

데이터 구성 원소의 종류

- str(data)를 입력하면, 데이터의 구조가 나옴
- \$가 앞에 붙은 각 변수들의 원소가 어떠한 형태인지 확인할 수 있다
- R에서 찾아볼 수 있는 원소의 형태는 아래와 같다
 - numeric, double integer는 계산할 수 있으나, 나머지는 계산할 수 없다
 - 숫자도 " "로 묶어줄 경우, character로 인식 (R에게는 1은 숫자이나, "1"은 문자)
- 측정척도와 연결해서 생각하자
- 기타 형태:
 - Inf/-Inf: 무한대 / NA: 결측값 / NaN: 숫자가 아닌 값(Not a Number) / NULL: 미정

Mode	형태
numeric	3.14, 9, 5, -2, 0
double	3.14, 2.00, -2.3
integer	0, 1, 2, 3, 4, 5
character	"Mary", "Dog", "I"
factor	F, M / 1, 2, 3
logical	TRUE, FALSE
date/time	2015-07-07

데이터 속성 확인 및 변경

- ・ is.*() 함수를 사용해서 데이터 속성을 확인할 수 있다
 - is.numeric(data)
 - is.integer(data)
 - is.character(data)
- ・ as.*() 함수를 사용해서 데이터 속성을 변경할 수 있다
 - as.numeric(data)
 - as.integer(data)
 - as.factor(data)

인덱싱 연습

- data[row number, column number]
- data\$variable name
- data\$variable name[row number]
- · data\$variable name[조건]

기술 통계학(Descriptive Statistics)

- 자료의 요약
- 통계학은 기술통계학과 추론통계학(Inferential Statistics)로 나뉜다.
- · 통계학의 꽃은 추론통계학
 - 그러나 추론통계에 들어가기 전에 반드시 기술통계에 대해 이해를 해야 한다.
- ・ 기술통계는 내가 무엇을 가지고 있는지, 재료에 대한 탐구

일원분석(Univariate Analysis)

- 하나의 변수의 속성에 대해 탐구하는 것
 - 분포 (Distribution)
 - 중심경향 (Central Tendency)
 - 산포도(Dispersion or Spread)
 - 기울기(Skewness)

이원분석(Bivariate Analysis)

- 두 변수 간의 관계에 대한 요약
 - 교차 분석표 (Cross table)
 - 산점도 (Scatter plot)
 - 평균비교

일원분석 - 분포

- 변수의 종류, 척도, 변수값의 수에 따른 분포
- 빈도표(Frequency table): 변수의 속성들이 관찰되는 수에 대한 기술
- 막대그래프, 파이그래프
- 히스토그램
- > library("descr")
- > freq(tess133\$Q1)

How about you, how much do you know about student loan forgiveness policies?

	Frequency	Percent
-1	2	0.3373
1	218	36.7622
2	119	20.0675
3	77	12.9848
4	103	17.3693
5	40	6.7454
6	25	4.2159
7	9	1.5177
Total	593	100.0000

Histogram of tess133\$Q1

일원분석 - 중심경향치

- 데이터의 전형적인(typical) 값 또는 대푯(representative)값
- ・ 평균(mean)
 - 모든 변수 값을 더한 후 총 사례 수로 나누어 구한 값 (∑X/n)
 - mean(변수, na.rm = TRUE)
- ・ 중위수 또는 중앙값(median)
 - 분포를 50대 50으로 가르는 값 즉, 50분위수(50th Percentile)
 - median(변수, na.rm = TRUE)
 - quantile(변수, na.rm = TRUE)

quantile(변수, prob = .5)

- · 최빈값(mode)
 - 가장 빈번하게 관찰되는 값이나 속성을 보여주는 값
 - 별도 함수를 만들어야 함

일원분석 - 산포도

- 데이터가 얼마나 퍼져있는가
- · 범위(range)
 - 최대값 최소값
 - range(변수, na.rm = TRUE)
 - max(변수, na.rm = TRUE)
 - min(변수, na.rm = TRUE)
- · 분산(variance)
 - 각 값이 평균적으로 평균으로부터 얼마나 떨어져 있는가?
 - 편차(평균 각 값)을 제곱하여 더한 후, 사례 수로 나눈 값
 - var(변수, na.rm = TRUE)
- 표준편차(standard deviation)
 - 분산의 제곱근
 - sd(변수, na.rm = TRUE)

일원분석 - 기울기

- · 왜도(Skewness)
 - 양의 기울기: 긴 꼬리가 오른쪽
 - 음의 기울기: 긴 꼬리가 왼쪽
 - 0이면 양쪽이 대칭
- 첨도(Kurtosis)
 - 얼마나 표족한 분포인가
 - 숫자가 클수록 뾰족한(중심에 급격히 몰려있는 분포)
- 첨도와 왜도를 구하는 함수는 moments라는 패키지에 잇음
 - skewness(변수, na.rm = TRUE)
 - kurtosis(변수, na.rm = TRUE)

이원분석 - 교차분석(Crosstab analysis)

- Contingency table (교차표 또는 분할표)
 - 두 범주형 변수 (명목, 순서 척도 변수)의 관계를 검증하는 데 쓰임.
- 이변량 결합 빈도표(bivariate joint frequency table)

- Crosstab은 cross-tabulation의 약어로서 테이블 내의 각 cell 안에는 두 변수의 각 값에 공통으로 들어가는 사 례 수가 들어감.

- 교차분석표 만들기
 - 1)독립변수는 열(column)에 위치
 - 2)종속변수는 행(row)에 위치
 - 3)독립변수 기준으로 퍼센트 계산 독립변수 방향으로 100%가 되도록
 - 4)종속변수의 한 값에 초점을 맞추어 독립변수 값 변화 시 가설에 부합하는 변화가 있는지 살펴본다
- crosstab(종속변수, 독립변수, prop.c = TRUE, chisq = TRUE)
 *descr 패키지에 있음

이원분석 - 산포도

- 두 변수 모두 구간 혹은 비율 척도로 측정된 변수인 경우
- 순위 척도라도 측정값(value)이 많은 경우 사용할 수 있다.
- 산점도내 한 점은 한 사례(case)를 나타낸다.
- 독립변수는 X축에 종속변수는 Y축에 배치
- · 상관계수(correlation coefficient)로 요약할 수 있다.
 -우상향 혹은 우하향의 선형(linear)관계
- cor.test(x, y, method = "pearson")
- corr.test(data, method = "pearson")
 - * psych 패키지에 있음

0 5 기초 통계 분석

05 기초 통계 분석

t test

- 두 집단의 평균 비교
- t test 절차
 - 1) 변수 정리

2) t test의 종류 확인: 단일 표본 / 독립 표본 / 대응 표본

3) 독립 표본일 경우, 분산 동질성 test 하기: bartlett.test(종속변수 ~ 독립변수, data = data)

문법

- 1) 단일표본: t.test(변수, mu = mu)
- 2) 독립표본: t.test(종속변수 ~ 독립변수, data = data, var.equl = FALSE)
- 3) 대응표본: t.test(변수1, 변수2, data = data, paired = T)

0 5 기초 통계 분석

ANOVA

- 셋 이상의 집단 간 평균 비교
- ANOVA 절차

1) 변수 정리: 독립변수(집단을 구분하는 변수)는 factor의 형태여야 한다 (numeric 안됨)

- 2) 집단 별 평균 확인하기
- 3) aov 실행:

result <- aov(종속변수 ~ 독립변수, data = data) **result*는 임의의 *object* summary(result)

4) 사후 검정:

```
TukeyHSD(result, ordered = FALSE)
```

- ・ 이원 분산 분석 (two-way ANOVA)
 - 상호작용 가정하지 않을 때: aov(종속변수 ~ 독립변수1 + 독립변수2, data = data)
 - 상호작용 가정할 때: aov(종속변수 ~ 독립변수1 * 독립변수2, data = data)

05 기초 통계 분석

OLS 회귀분석

- · 종속변수와 독립변수 간의 선형 관계의 예측 -> 상관관계의 추정
- OLS 회귀분석 절차
 - 1) 변수정리: factor 변수들 처리에 주의.
 - 2) 변수들의 분포 확인: 종속변수가 정규분포가 아닐 경우, 다른 모형을 고려하기

3) 회귀모형의 추정

result <- Im(종속변수 ~ 독립변수1 + 독립변수2 + ..., data = data) *result는 임의의 object summary(result)

4) standardized coefficient 확인

Im.beta(result) *Im.beta는 "Im.beta" library에 있음

5) vif(분산팽창계수) 확인

vif(result) *vif와 confint는 "car" library에 있음

6) confident interval 확인

confint(result)

2020 07 | R workshop

Thank you

email: hjhwang@snu.ac.kr