Machine Learning

컴퓨테이셔널 방법론 부트캠프

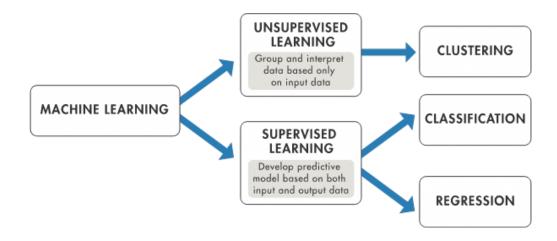
2021-11-25 오종환 Machine Learning

What is Machine Learning?

- 컴퓨터가 데이터로부터 학습하여 의사 결정을 할 수 있도록 만드는 것
 - 인공지능의 하위 개념으로 분류되기도 함
 - 명확한 룰을 사람이 직접 프로그래밍 하지 않음
 - 예측을 할 수 있는 데이터 모델을 구축하는 수단
 - ㅇ 예)
 - 이메일이 스팸인지 아닌지를 학습하는 것
 - 위키피디아의 글을 몇가지 카테고리로 clustering

Supervised/Unsupervised Learning

- 지도학습(supervised learning): 입력과 출력값이 모두 주어진 상태에서 학습을 하여 출력 값을 예측하는 것
- 비지도학습(unsupervised learning): 입력값만 존재하는 상황에서 숨겨진 패턴을 찾아내는 것



Reinforcement Learning 강화학습

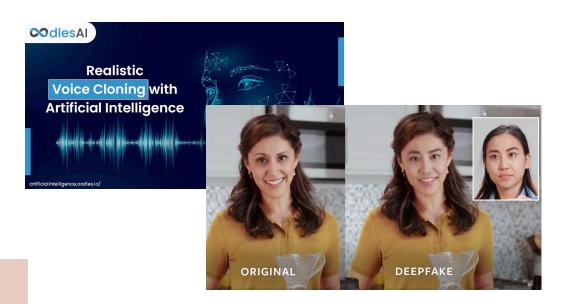
- 주변 환경과 상호작용할 수 있는 일종의 Software agent
 - 행동을 최적화하는 방법을 학습함
 - 시스템이 우연히 취한 행동에 상점 또는 벌점을 주는 것을 반복하여 특정 목적을 이끌어냄
- 경제학, 유전학, 게임플레이 등에 활용

Deep Learning 심층학습

- Machine Learning의 하위 집합
- 여러 비선형 변환 기법의 조합을 통해 높은 수준의 추상화를 시도하는 머신러닝 알고리즘의 집합
 - 사람의 학습 방식을 모방하여 컴퓨터가 수행
- 생명체의 신경망(neural network)를 모방한 인공신경망에 기반하여 설계된 개념
 - 1989년 처음 소개되었을 때, 신경망 학습에 소요되는 시간이 비현실적으로 오래 걸렸음
 - 이 이후, 더욱 효율적인 모델에 밀려 사람들의 관심에서 멀어졌음
 - 2000년대 이후, 과적합 등 여러 가지 문제점이 해결하는 방법론이 개발. GPU의 활용 등 컴퓨팅 파워가 비약적으로 발전

Deep Learning 심층학습

• 영상/음성 인식, 자연어 처리 등 기존의 방식으로 할 수 없었던 많은 과제에 적용



Python Libraries

Numpy

- 고성능의 수치계산이 가능
- 벡터와 행렬의 연산
- 기본적으로 array를 기본으로 한 연산을 수행
- pandas와 matplotlib의 기반

Pandas

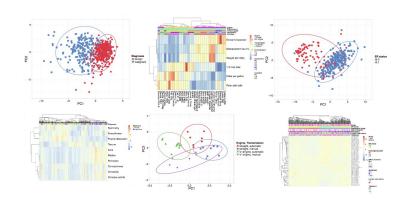
```
[ ] X = iris.data
    y = iris.target
    df_f = pd.DataFrame(X, columns=iris.feature_names)
    df_f.head()
```

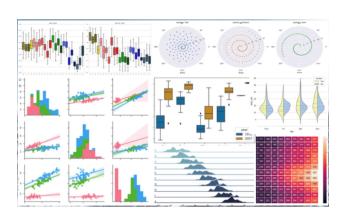
	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

- 테이블 형태의 데이터 구조인 데이터프레임을 활용
- 데이터를 확인하거나, 선택, 변형, 병합 등의 작업을 수행할 수 있음
- Numpy array를 전달 받아 데이터 프레임을 만들거나, matplotlib으로 시각화

Matplotlib / Seaborn

- import matplotlib.pyplot as plt
 import seaborn as sns
- 데이터 시각화를 위한 라이브러리
- 데이터 탐색을 위한 EDA 과정 혹은 결과물의 효율적 전달을 위한 visualization





Scikit-Learn

- Machine Learning 을 위한 라이브러리
- pandas dataframe이나 numpy array를 데이터셋으로 활용
- 모든 machine learning 모델들이 python class로 작성되어 있음

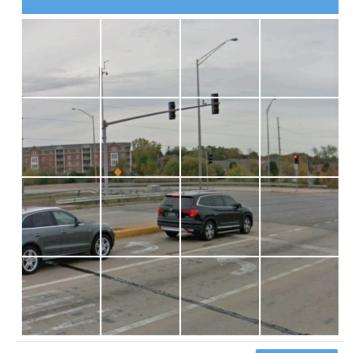
Scikit-Learn

- 일반적인 Scikit-learn API 사용단계
 - 1. 목적에 맞는 예측 모델을 import 한다.
 - 2. 모델에 원하는 하이퍼 파라미터를 설정한다.
 - 3. 데이터를 feature 행렬과 target 벡터로 나눈다.
 - 4. fit() 를 호출하여, 모델을 구성한다.
 - 5. 새로운 데이터를 모델에 대입한다.
 - supervised learning: predict()를 이용하여 label을 예측
 - unsupervised learing: transform() 또는 predict()를 이용하여 결과를 확인

Classification

Supervised Learning

- 시간이 많이 들거나 비용이 많이 드는 작업을 대신함
 - 의사의 진단
- 미래에 대한 예측
 - 클릭할 것인가 하지 않을 것인가?
- 라벨이 있는 (labeled) 데이터가 필요
 - 기존의 기록된 데이터를 활용
 - 실험을 통해 모음 (예: 크라우드 소싱)



Exploratory Data Analysis

- EDA (Exploratory Data Analysis, 탐색적 데이터 분석)
 - 데이터의 구조와 특징을 파악
 - 통계적 정보와 시각화를 통해 데이터의 패턴 또는 인사이트를 발견
 - 분석 과정에서 유연하게 가설을 설정할 수 있음
 - 자료를 직관적으로 바라볼 수 있음
 - 이상치(outliers)를 발견
 - 선데이터 탐색, 후 분석



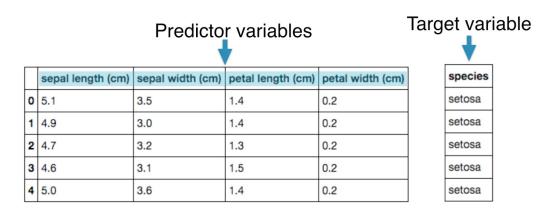
Iris Setosa

Iris Virginica

IRIS DATASET

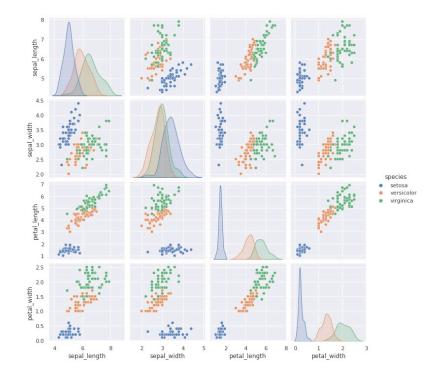
Classification

- Predictor variables = Independent variables = Features
- Response variable = Dependent variables = **Target variable**



Exploratory Data Analysis

```
import seaborn as sns
iris = sns.load_dataset('iris')
sns.pairplot(iris, hue='species');
```



EDA

```
[8] type(iris)
   pandas.core.frame.DataFrame

[12] iris.shape
   (150, 5)

[9] iris.head()
```

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

[10] iris.describe()

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333
std	0.828066	0.435866	1.765298	0.762238
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

[11] iris.info()

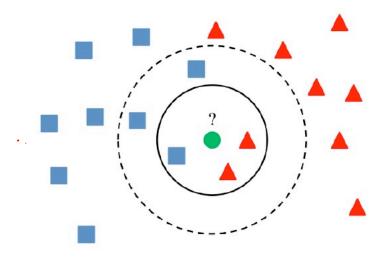
RangeIndex: 150 entries, 0 to 149 Data columns (total 5 columns): Column Non-Null Count Dtype sepal length 150 non-null float64 sepal width 150 non-null float64 petal length 150 non-null float64 petal_width 150 non-null float64 species 150 non-null object dtypes: float64(4), object(1) memory usage: 6.0+ KB

<class 'pandas.core.frame.DataFrame'>

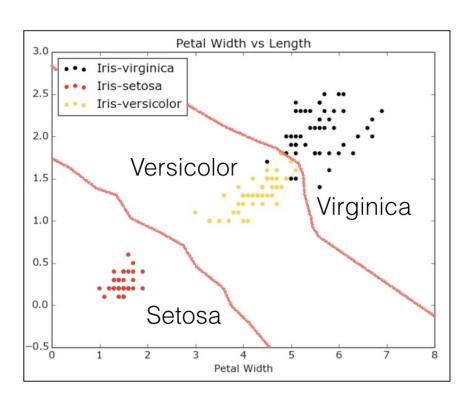
k-Nearest Neighbors

- 새로운 데이터가 주어졌을 때 기존 데이터 가운데 가장 가까운 k개 이웃의 정보로 새로운 데이터를 예측하는 방법
 - 주변에 있는 가까운 labeled data들의 다수결 투표로 분류
 - o k의 값과 거리의 측정방법이 결정해야할 요소(hyperparameter)

k-Nearest Neighbors



k-Nearest Neighbors



Iris 데이터셋으로 모델 구성하기

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=6)
knn.fit(iris['data'], iris['target'])
KNeighborsClassifier(algorithm='auto', leaf_size=30,
    metric='minkowski',metric_params=None, n_jobs=1,
    n_neighbors=6, p=2, weights='uniform')
iris['data'].shape
(150, 4)
iris['target'].shape
(150,)
```

새로운 데이터를 넣어 예측하기

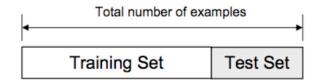
```
print('Prediction: {}'.format(prediction))
```

Prediction: [1 1 0]

모델의 성능 측정하기

- 분류에서는 정확도(accuracy)가 기본적인 성능 측정 지표
- Accuracy: 테스트를 위해 입력한 데이터 중에 맞게 예측한 것의 비율
 - 성능 측정에는 모델 구성에 사용하지 않은 데이터를 넣어봐야 함
 - 균일한 label을 가진 데이터를 가지고 측정해야한다

Training Set, Test Set



- 전체 데이터를 미리 학습을 위한 데이터 (training set)와 모델 성능 측정을 위한 데이터 (test set)로 나눔
- test set의 데이터를 입력하여 예측을 해본 뒤, 실제 label과 비교하여, 정확도를 측정함
 - 랜덤하게 추출하되, 나눌 때에도 각 class 의 비율을 고려해야함
- 일반적으로 7:3 정도이나 상황에 따라 다름
 - training set이 많으면, 더 정확한 모델을 만들 수 있으나, test set이 적어지면 측정이 부정확 할 수 있음

Training Set, Test Set

```
Test set predictions:
[2 1 2 2 1 0 1 0 0 1 0 2 0 2 2 0 0 0 1 0 2 2 2 0 1 1 1 0 0
1 2 2 0 0 2 2 1 1 2 1 1 0 2 1]
```

```
knn.score(X_test, y_test)
```

0.95555555555556

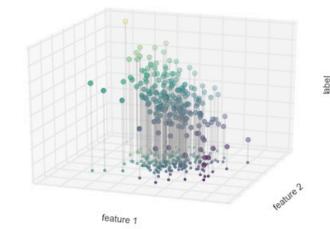
실습: 정치인의 정당 소속 분류하기

- 정치인들 활동 내역이 담긴 데이터 세트에 kNN을 적용
- 기록에 따라 미국 의원의 정당 소속을 분류
- 1. Data set 준비
 - O Google colab에 접속하여 주어진 데이터셋을 업로드
 - 필요한 라이브러리를 Import
 - EDA를 통한 데이터 탐색
 - 전처리(preprocessing): 분석에 맞게 데이터셋의 구조를 변화하고 결측치를 처리
- 2. training set, test set 나누기
- 3. k-NN분류기를 구성하고, training set으로 fit()
- 4. 모델 성능 측정
 - 새로운 데이터를 정치 활동 데이터를 입력하여, 어느 정당 소속인지 예측해보기
 - O Test set 입력하여, 정확도 측정

Regression

Regression 회귀분석

- 분류(Classification): 불연속적인 값을 예측
- 회귀(Regression): 연속적인 값을 예측



Boston Housing Data

```
boston = pd.read_csv('boston.csv')
print(boston.head())
```

```
CRIM
                INDUS CHAS
                               NX
                                          AGE
                                                 DIS RAD
                                                            TAX \\
0 0.00632
          18.0
                 2.31
                         0 0.538 6.575
                                         65.2 4.0900
                                                        1 296.0
  0.02731
           0.0
                 7.07
                         0 0.469
                                  6.421
                                         78.9 4.9671
                                                        2 242.0
  0.02729
                         0 0.469 7.185 61.1 4.9671
           0.0
                 7.07
                                                        2 242.0
  0.03237
                 2.18
                         0 0.458 6.998 45.8 6.0622
                                                        3 222.0
           0.0
4 0.06905
           0.0
                 2.18
                         0 0.458 7.147 54.2 6.0622
                                                        3 222.0
  PTRATIO
                 LSTAT
                        MEDV
     15.3 396.90
                   4.98 24.0
     17.8 396.90
                   9.14 21.6
     17.8 392.83
                   4.03 34.7
     18.7 394.63
                   2.94 33.4
     18.7 396.90
                   5.33 36.2
```

Feature/Target variable 나누기

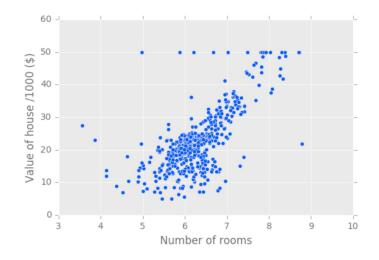
```
X = boston.drop('MEDV', axis=1).values
y = boston['MEDV'].values
X_{rooms} = X[:,5]
type(X_rooms), type(y)
(numpy.ndarray, numpy.ndarray)
y = y.reshape(-1, 1)
X_{rooms} = X_{rooms.reshape}(-1, 1)
```

산점도(scatter plot)로 시각화

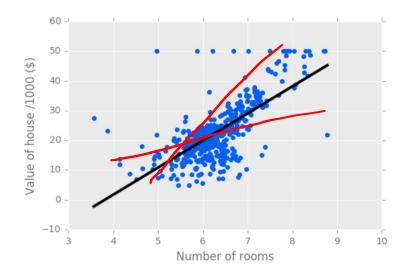
```
X_rooms = X[:,5]
type(X_rooms), type(y)

(numpy.ndarray, numpy.ndarray)
```

```
y = y.reshape(-1, 1)
X_rooms = X_rooms.reshape(-1, 1)
```



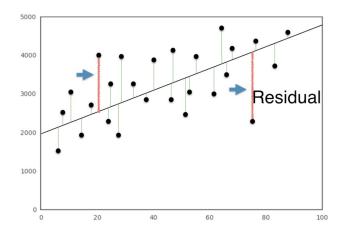
Linear Regression Model



Linear Regression Model

- y = ax + b
 - o y:target
 - o x:feature
 - a, b:모델이 결정하는 parameter.
- 모델을 구성하는 것은 오류를 가정 적게 만드는 model parameters를 결정하는 일

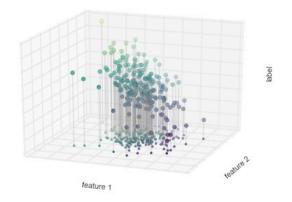
The Loss function



• 손실함수(loss function)을 정의하고, 이 값을 최소화하는 값을 계산

높은 차원의 linear regression

- 차원을 높이면 (=feature의 수를 늘리면),
 - 결정해야할 parameter의 숫자가 늘어남
 - o label을 예측할 수 있는 평면을 만들어 내는 것

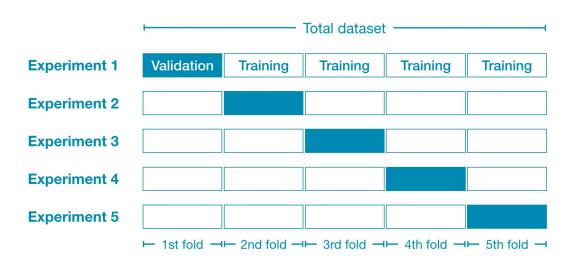


$$y = a_1 x_1 + a_2 x_2 + b$$

높은 차원의 linear regression

```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
X_train, X_test, y_train, y_test = train_test_split(X, y,
    test\_size = 0.3, random\_state=42)
reg_all = LinearRegression()
reg_all.fit(X_train, y_train)
y_pred = reg_all.predict(X_test)
req_all.score(X_test, y_test)
```

Cross-Validation (k-fold CV)



- 우연히 선택된 set의 분할이 결과의 모델 성능을 크게 좌우할 수 있으므로, 이를 보정하기 위한 방법
- 샘플의 크기가 작을 때 유용함
- 결과를 평균 내어 모델 성능을 결정

Cross-Validation (k-fold CV)

```
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LinearRegression
reg = LinearRegression()
cv_results = cross_val_score(reg, X, y, cv=5)
print(cv_results)
```

```
[ 0.63919994  0.71386698  0.58702344  0.07923081  -0.25294154]
```

```
np.mean(cv_results)
```

0.35327592439587058

실습: Gapminder

- Gapminder Dataset:여러 국가의 GDP, 출산율, 인구, 기대수명 등이 담긴 데이터
- Feature들을 사용하여 기대수명을 예측하는 모델을 구성
- 1. EDA
 - 데이터를 탐색해서 변수들간의 상관관계를 알아보기
- 2. 한 가지 변수만으로 예측하기
- 3. 여러 변수를 사용하여 예측하기
- 4. 모델 성능 측정
 - o R square 값을 확인하여, 모델이 정확하게 구성되었는지 확인하기
 - O Cross Validation으로 모델 성능 확인하기

더 좋은 모델 만들기

Accuracy in Classification

- Label된 Class간의 비율이 지나치게 차이가 나면 accuracy 사용이 맞지 않음
 - 스팸 메일 1%, 정상 메일 99%인 데이터 셋에서, 무조건 정상 메일로 분류한다면?
 - 99%의 accuracy → 쓸모 없는 분류기
 - 다른 척도를 사용해야함
- class를 구성하는 비율이 서로 비슷할 때만 사용!

Confusion Matrix

$$Accuray = rac{TP+FN}{TP+FP+TN+FN}$$

Actual: Spam Email

Actual: Real Email

Predicted: Spam Email	Predicted: Real Email	
True Positive	False Negative	
False Positive	True Negative	

$$Recall = \frac{TP}{TP + TN}$$

$$Precision = rac{TP}{TP+FP}$$

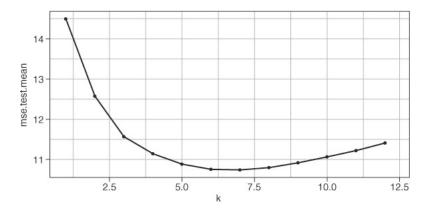
$$F_1 = 2 * \frac{Precision * Recall}{Precision + Recall}$$

- precision이 높으면, "스팸으로 예측된 것들 중에 정상 메일은 별로 없음"
- recall이 높으면, "실제 스팸메일들을 대부분 모델이 예측했음"

```
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
knn = KNeighborsClassifier(n_neighbors=8)
X_train, X_test, y_train, y_test = train_test_split(X, y,
   test_size=0.4, random_state=42)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
print(confusion_matrix(y_test, y_pred))
[[52 7]
 [ 3 112]]
print(classification_report(y_test, y_pred))
            precision
                         recall f1-score
                                            support
                 0.95
                           0.88
                                     0.91
                                                 59
                 0.94
                           0.97 0.96
                                                115
avg / total
                 0.94
                           0.94
                                     0.94
                                                174
```

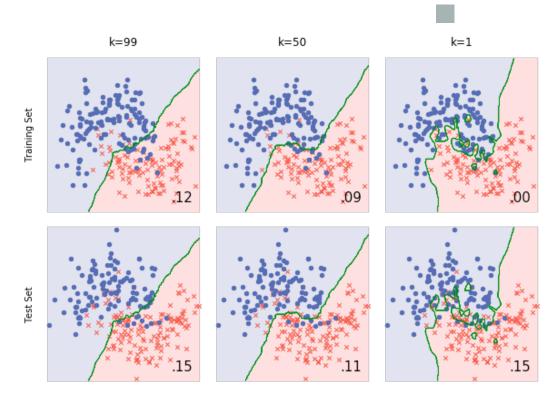
Hyperparameter 조절하기

- Hyperparameter는 모델이 학습할 수 없으며, 직접 선택해주어야 하는 값
 - 예: k-Nearest Neighbors: k 고르기 (n_neighbors)
- Deep Learing 에서는 훨씬 많은 수의 hyperparameter 존재



Under-/Over-Fit

- 적당한 k값 찾기
 - k가 너무 크면, 경계선이 단순 한 모델이 되어 정확도가 떨어 짐
 - o k가 너무 작으면, training set 에만 잘 맞아 새로운 데이터 입력시 정확도가 떨어짐



https://cambridgecoding.wordpress.com/2016/03/24/misleading-modelling-overfitting-cross-validation-and-the-bias-variance-trade-off/

Hyperparameter

- 1. 여러 가지 다른 hyperparameter 값을 대입
- 2. 각각 모델을 구성해 보기
- 3. 모델 성능 비교해보기 (cross-validation 포함)
- 4. 가장 높은 성능의 모델 채택

0.5	0.701	0.703	0.697	0.696
0.4	0.699	0.702	0.698	0.702
0.3	0.721	0.726	0.713	0.703
0.2	0.706	0.705	0.704	0.701
0.1	0.698	0.692	0.688	0.675
	0.1	0.2	0.3	0.4

Alpha

- 반복적으로 hyperparameter의 값을 변화하면서 가장 낮은 오류율을 가진 모델을 선택
- Grid search CV 등의 방법 사용

Preprocessing

Preprocessing

- "Garbage in, Garbage out"
- 데이터를 다루는 과정에서 가장 힘들고 오래 걸리는 과정
- 내가 분석하고자 하는 데이터는 예제와 같이 항상 깔끔하게 정리되어 있지 않다!

범주형 변수 (categorical feature)

- Scikit-learn 은 범주형 변수를 학습할 수 없음
- 문자를 숫자로 바꾸는 encoding 과정이 필요

	mpg	displ	hp	weight	accel	origin	size
0	18.0	250.0	88	3139	14.5	US	15.0
1	9.0	304.0	193	4732	18.5	US	20.0
2	36.1	91.0	60	1800	16.4	Asia	10.0
3	18.5	250.0	98	3525	19.0	US	15.0
4	34.3	97.0	78	2188	15.8	Europe	10.0

범주형 변수 (categorical feature)

- 각각의 category를 feature로 정의 하고 0 또는 1로 코딩 (dummy variable)
- pandas 의 get_mummies() 이용

Origin	origin_Asia	origin_US
US	0	1
Europe	0	0
Asia	1	0 .

결측치(missing value) 처리

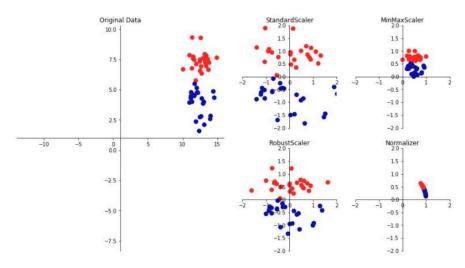
- 어떤 이유에서건 측정되지 않아, 데이터가 비어있는 경우가 있음
- 데이터 원본에는 어떻게 표기되어 있는지 직접 확인해야함
 - NaN 으로 표기되거나, 다르게 표기되어 있을 경우도 있음
- 모델의 종류에 따라, 제대로 학습할 수 없는 경우가 많아 처리가 필요함
- 결측치의 패턴, 결측치의 양을 파악하는 것에서 시작

결측치(missing value) 처리

- 제거: 결측치가 있는 데이터를 버림. 결측된 데이터가 사라져 편향이 생길 수 있으므로 매우 주의해야함
- 다른 값을 로 치환: 데이터의 특성을 살펴서 평균값, 최빈값 등 합리적인 값을 선택해 채움
- 모델 기반 처리: 결측치 예측 모델을 구성하여, 채워나가는 방식
 - Scikit-Learn의 pipleline 이용하기

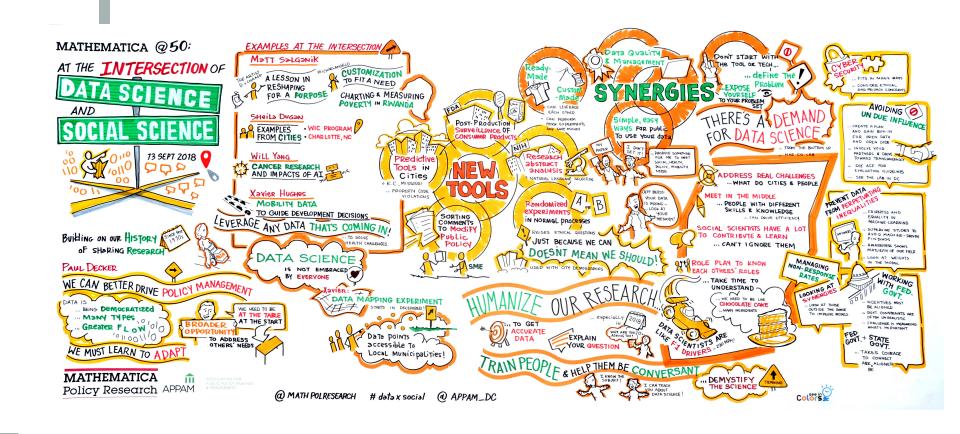
Normalizing

- Feature 간의 스케일이 달라 무시되는 경우도 있음
- 값의 범위를 비슷한 스케일의 수준으로 변환

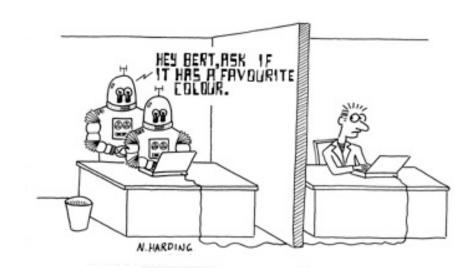


Normalizing

- 정규분포를 따르는 경우 (EDA로 확인)
 - 모든 feature가 평균 1, 표준편차 1가 되도록 만듦
 - 경우에 따라 Log를 취해 정규분포를 따른 경우도 있음 (Feature engineering)
- 정규분포는 아니나, 고르게 분포하는 경우
 - 최솟값을 0으로, 최댓값을 1로 매핑함
- 데이터의 분포나 특성에 따라 다양한 방법을 사용



https://www.mathematica.org/-/media/internet/data-analytics-graphics-and-photos/data-analytics-graphics/mathematica-at-50-data-science-and-social-science-graphic-recording-13-sept-2018-4464x1912-72-dpi.jpg



이 자료는 Datacamp의 "Supervised Learning with scikit-learn"과 Jake VanderPlas 의 "Python Data Science Handbook" 의 데이터와 구성을 참조하여 제작하였습니다.